NASA TT F-9371

CONTROL EFFECTS ON THE ELASTIC BLADE OF A HELICOPTER ROTCR

Al ,Marinescu
-y R |
H - 2 J 6 8 ]
; (ACCESS NqBER) - {THRY)
g
Y
E’ (PAGES: {CODE)
-" L
g 8 F—
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

Translation of WEfectul comenzii la palele elastice
ale rotorului de eljcopter”,
Studii si Cercetdri de Mecanica Aplicatd, Voi.lh,
No.5, pp.1073-1087, 1963,

GPO PRICE $

OTS PRICE(S) 3

Hard copy (HC)%/; \/;g

Microfiche (MF)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON MAY 1965

i == PN



-f
b1l
51
52

CONTROL EFFECTS ON THE ELASTIC BLADES

NASA TT F-9371

Al . Marinescu
2 —3(—?'7

The problem of forced vibrations o the blade of a heli-
copter rotor is investigated, where the perturbation

forces are due to the effect of the con.rol (at a varia-
tion with tiﬁe of the collective :cetting angle, respect-
ively of the amplitude of cyclic variation)., The effect
of the control during abrupt changes as well as the same

effect during gradual obligue changes in command are

taken into consideration, It is emphasized that an inte-
gration of the equations of motion of the blade is neces-
sary, by means of a Laplace transformation; the conditions

required for attenuation or complete disappearance of these

/4%6/2514’L4f/'m)

vibrations are given.

OF A HELICOPTER ROTOR

[1C73

Notations
O0XYZ = Fixed system of axes (X0Y-plane coinciding with the control
plane)
Oryz = System of rotary axes (Or-axis coinciding with the position
of the rigid blade)
R = Radius of the rotor
ty = Chord of the blade
r = Distance of a given section of the rotor axis
* Numbers in the margin indicate pagination in the original foreign text,
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Studies on

ettack, on the amplitude of cyclic variation and constant angular velocity,
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Genrneralized coordinate

Deviation of tha testea rlade from the position of the rigid

blade

Angular velocity of the rotor
Angular velocity before control
Vz—iation in angular wvelocity
Natural fre-aency of the rotary blade
Induced velocity

Induced velocity before control
Variation of the induced velocity
Generalized mass of the blade

Angle of attack of the blades

Angle of attack before contro.
Variation of the angle of attack
Induced angle

Flapping angle of the blades

Slope of the curves referring to the blade profile
Function of modal form

Atmospheric density

Complex guantity

Ob jeet function
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the vibrations suffered by a blade at a collective angle of

nave shown that the perturbation forces can, in the general case, be expressed

in the form of a Fourier series,
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In the case of a collective angle of attack, the amplitude of cyclic vari-

ation and the angular velocity become a function of time, and it might happen,

48]

at the instant at which a command is given, that high perturbation forces are

generated which exert their effect on the elasiic blades, a point which is the
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object of our studies,

With respect to the collective angle of attack and tre amplitude of cyclic
variation, we have considered two of the many types of variations with time as
they cccur in practice, namely, the variation curing sudden application of
control (Fig.l) ard the variation during gradual oblique application (Fig.2).

Since the helicopter command for the collective setting angle is coupled
with the gas pedal for the engine, it can be assumed that, because of these
two types of time variation, the angular velocity of the rotor changes slightly
during sudden application of control (Fig.3) or completely during gradual appli-
cation,

In these dlagrams, the evolution of the deflection is shown, taking into
consideration the case of deflection without asymmetry of the blade velocity
(vertical deflection or fixed point). This is known as the ™in situ" command,

It is of interest to se: here that, under these conditions, the de- /1075
formation of the elastic plade due to the control effect, together with other
types of transitory ¢ynamic response of the blade, are attenuated, which is of

practical value in ihe flying of helicopters,
I. EFFECTS DURING SUDDEN APPLICATION OF CONTROL

a, Effect of Control on the Collective Angle of Attack

Let us adopt the hypothesis of uniform induced velocity in the mentioned
evoclution and, for the time being, let us assume average constant values in the
calculation, so that with respect to one blade slement the aistance r can be

generally written as

AP = L1, () €10 — o) dr = £ 1, wrp c;,(e - —1—0~)dr.
~ wr

ad

(1)
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The effect of control manifests itself here by a rise in angular velocity,
and the angle of attack becomes a function of tire,

Through the variation in time, the boundaries near the blade influenced
by the control give rise to the generation or displacement of vibrations which
incite deflections

z=§l S, (2)
which represents a criterion for the position of the rigid blade, which posi-

3

tion can be determined from the aercdynamic data of the rotor (Fig.5).

In accordance with the data given in another repert (Bibl.2), the equation

of motion of the blade has the form

t..+a§’,,+bcn=AFum (3
in which
n
npwg Lro, (rdr
o0
a = - 7 '
M"+.—P§ ti (Dr. (T) dr
4%
b= Mo v ,




Owing to the effects of conirol it is obvious that then the coefficient a /1076

and b of eq.(3) become functions of time and that, in this sense, we can put
w = w, + Aw
and, again, the natural frequency of the rotating blade will be
vi = Vg 4 k0wl =] 1 k(g 4 Bw) = (v + K, o) 42k, vo Aw 4+ kAo,

With € = §, + A8, eq.(3) tecomes

t,. + [10 + ax(t)]”:n + [Eo +&(t) +e,(1)]%, = o+ ﬁ;(t) (h)
or .
tn + o Cu + @y :n(t—':) + g L.+ €10 L, (t—7) 4
+ €y Wn (t—7) = By + By (t—1). (5)

Let us apply to eq.(5) the Laplace transformation, together with the limit

conditions
. (0)
8. (0)

[

0,
0,
Without diminishing the generality, we will then have

Ly, = X,

Leg §, == g X,

Lag 2, == oy pX,

L, =p* X,

Lo 3, (t—7) = ape " L, = z5¢ 2" pX,
Leyo G (0—7) = g6 X,

Legy Ly (1—7) = o 77" X,

LB = Bo

L3 (t—=, = Broe™".

Since p is a complex quantity and since the exponential function car be

expanded in a series with infinite convergence domain, we have

2
¢ =1 — pr 4+ }i“;- + ..

(6)



Summing the first two terms of this expansion and making the necessary

calculations, eq.(5) becomes

X[p3+ ao + alo —_ ‘7510 -— T bzo p + E_O_ielo + 520 —
1 T % T 1 hand am‘t
reo+ﬁxq___ ﬂo‘f i (7)

]
l—at 10yt

where L_'leO
R
nmeQ t,r @, (r)dr
Ay = -0, N

R
M, 4 :-P-Q 2@, (r)dr

[
4

n
wel mog t,r®, (r)dr

J‘[" -+ ——\ t' (b

J[ ( + 1\/ (1)0)
€y = o ’

M, + 2\ o (nar
+4§ (r)dr

2 M,k vyha,

€0 = '

M, +ZE\ 2o, ma
+4‘\ (r) dr

M, ky Aw
20 = wp (R '
M, + ——‘ t2 O, (r)dr
R p R
C' — o} S C (), r3dr — O, 2wy w S Q. (r)t,rdr
o 2 o
BO = ~---:~ - ’
a, + 2 \ o, (rydr
TR
° R 5 R
H, —‘;C;S O, (r)t,r2dr — C, - A w, wS O (r)t, rdr
Blo= . = . *

K
N+ I;".S 20, (r)dr

T Jo
H, = 2wy 0, Awg + Awj By + «f A0y + 2wy Awy ABy + Awi AB.

Using the notations,

2B =20 &g~ TE — T Ey

— - y

1 — 7
(2 = iq__'{‘ €10 + e20'
1 ha alo T



Do Bt

1 — a7
E— Pt
1 —
we obtain from eq.(7) o7 (L1078
) D . Ep ) (8)
P*+2Bp +C* p*+2Bp+ (2

Making ar _averse transformation will yield the solution of eq.(5):

D C¢ at i VR
cn = —C—z-[l — 'V—(jz':_._——?;e“" Sm(l’ (;'2 -— Bﬁ t + d))} —_—
z (9)
_— T':'T_.‘J..—_—.;C-m sinVE'?-— B3t
VC"—~B’
for C® >BZ, and
Z, = P—[l _ C? ](e—:\.: _ (a-A.t)‘_ & (e‘““ _ e“‘-‘) (10)
C’ Al - Az Az Al Al - AZ
for C*® < B%,
avi
i ____T_—-
i
— e oo
o g — !
Fig.b
In this expression
O = ure tg M— 8
A, and A, are again roots of the enuation p® + 2Bp + C? = 0,
In the case of combining the limit conditions in t:~ v+ » general form of
S (0) = T,
:u (0) =

and, combining the variation of the in ced velocity as shown in Fig.6, we

will have



L [ Xv

Lt =¢kX,

Louln=opX —apg,

L%, =p*X —p?,

L oo 3a(t —7) = ape " L {,= o,e? pX - a9 " py,
Logo o (t—%) =¢gp0 "X,

Loey Gt — 1) =¢ye ™ X,

L By = Bo

L Bt —x)=g,0,

where
I

C P, ) R
C,?w;, OOS D (r)t,r2dr — Ca—g-mowo& G, (r)t, rdr

BO = 0 .0
.+nPSt‘0(ﬂdr
. r /1079
Ho-f— C,',Q G, (Nt rrdr — Uo—g— C;R O, (r)t, radr
2 .0 2 .0
Bm = ’
i, + \ @,(r) d
4 o
Uy = wy Ay + 10y Awg + Awy Awy.
With our conditions, eq.(5) then becomes
X{p’—i—a" ! _zm"'"‘eo"p_*_‘o+‘1o+tzo]=
1—ap7 1 —0o07
11
__Bo+ﬁxo +°‘oco"axo"'+°‘m’p+:)pz, (11)
1— o7 1 — 07

from where, taking account of the notations from the preceding case, we will

cbtain D Fp ) ¢, p?

= -+ ’
P2+ 2 Bp + C? ;z)’—k'.!llp-{-(?fr p® + 2Bp + C? (12)

where
b d
® Sy — Plo T+ % T

1— a7

i

Solution of eq.(9) will thus be completed with the inverse transformation

2
of P which will yield the expression

p® + Dp + C

¢
Vcr — B3

e-®sin (jC? — B2t — @) (13)



if C® > B?, and

— (e M — Ae My (lb)

if C% < B®,

On further examination of the solution for both cases of the limit condi-
tions, it wilL be found that the quantity (,, independent of time, becomes
very small s scon as the quantities B and U become very large.

This reduces to the statement that the ccadition of vibration caused by
the control effect is greatly attenuated as soon as the quantity oy, beccwes
of the order of -%—.

Ir. this manner, it can be readily demonstrated that a connection exists

between the blade parameters and the response time of the engiie, such that the

initiation of commands does not ceuse forced viorations of the blade,

b, Effect of Cyclic Variation on the Angle of Attack 1080

In this case, the angular velocity remains constant (w = up = const) and
only the angle of attack undergoes a cyclic variation so that, taking this into
consideration in the usual manner, this angle can be considered as having the
form of A8 sin wt,

Let us neglect the transitory phase and, consequently, also the induced

angle of flapping motion and, at the same time, take into consideration

0 =0, + ACsin of, (15)

where A0 follows from the abrupt discontinuity in the slope of the curve in

Fig.l, so that the differential equation of motion of the blade will be

e+l + 08, =30 + By(0).
(16)

10



The coefficients a and b in the above equation are expressed here as well

a8 in eq.(3) but only if we assume here that w = up = const,

Thus, the predicted quantities B, and 2,(t) can be expressed as follows:

w

, O R
G\ i, 0, — —)ar
Po= B = - \ mor}

M, + 31_30 £, (r)dr

E
C, —? w3 .'3008 b, (r)t, r?dr
it ? sin wt = K, sin wt.

Let us apply the Laplace transformation cf eq.(16), together with the

limit conditions
% (0) = Loy
(0} =0,
which will yield
LI =pX—p*%,
L :n =pX —pU,.

In order to preserve the notations of the preceding case, let us put a =

= 2B and b = C%,

Then, eq.(16) becomes

pPX—pl +2BpX ~2Bp%+ X =p+K, ’P“’ .
P+ ot
from which it follows that /1081
2
X=¢ ! +2B P
* p?4-2Bp + CF C",p"‘ + 2Bp + o’
B K o 4 . (17)

+ +
p*+2Bp + (7 (p? + w?) (p* +2Bp + ()

Because of the fact that the first three terms have been inversely trans-
formed, it is relatively easy to make use of Tables, Thus, it is possible to
11



control the terms if we write the expression in the following manners:

. p? 1
Koo .
© P _ p? 4 w! p?*+42Bp -+ (C?
T pt+ W) (17 +2Bp + O P

Let us apply %he Borel theorem, arranged so that

g1 (p) = L Ay (1),
g2 (p) = L by (1),

simuliareous with

%@fﬂ@:ﬂ@kﬂTMﬂb—ﬂdT:LyhﬂTMdb—ﬂdﬂ
0 0

W2 will then have

L"l K w -'-I-)—z—-———‘ = K w
9 P+ o o W COS W,
“1r c o ——
ror] ey - DL S ¢>]
L-l 1 . if C2 > Bﬁ’
Pt 2Bp+Ct | (e e
Cn 1 Al_ Az Az 4«1 )
\ if C* < B?

where A,, A, are roots of the equation p? + Bp + C* = 0,
Let us consider the first case C°® > B? and, for facilitating the calcula-

tion, let us introduce the notations

k=TT B, o =00, oo,
C3 Ck

Then,

¢

Sk“ﬂhﬂ—TMT:

0

¢
= So (ucosw(t — 1) —ve BTsin (kT 4 ®) co8 w (¢t — T)]dT.
After performing higher integration, we can write /108
2
Lot PP+ @ p*+2Bp+ G _ |

Y4 i

12
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w . v ,
= —sin ot — — {cos ® cos wt (I, + 1) +
W 2

(18)
+ sin @ cos wt (J, +J;) +cos O sin wt (J, —J;) +
+ sin ® 8in ot (J, —J,)],

where

B . w
I = - e -e~8sin @t — ——1—e-Bleos o, t 4 o W
B? + W} B* + w? B2 4w
B ©
— ~Bl g w,
12——-B2+J20 B‘sxllmzt-—b—z: 2O-Bchszt+Bz 2 ,
w2 Wy + wj
B ©
J, = e ;e7Peos w bt + ———c¢ Psin ot + — B ’
+ ol B® + w B +
B [N B
J2=—-§2_1_ EC'B‘COSwat'f'—z 2 ?O_B‘Shlmzt—{— " 5!
- o B* + w B* + o}

o =k 4+ o,

w, =Kk — .

In that of the above two cases in which again C® < B2, and using the nota-

tions
. K, K, v
Mh="F"T"r""7"* Y= —F——
Ar(AL —Ay) Ay (AL —Ay)
. ¢
we will have S ho (T) By (t = T) 4T =
0

t
=g fucosw(t —T) +v,e Yeosw(t—T) — y,e" M cosw (t — 1)]dT.

¢0

After integration, this yields

. Pl 1
Kiw-— =
L p? + w? p*+2Bp 4 (*
P
_ _(_ Ay W ___Az Y2 e-/\,;) +
A} 4+ w? A? 4 ? (19)
s Y2 A, ) [ o Yg W :
+ - cos wt - S| 8in ol
Frs-mrs) e (Fr e mrame
I1. EFFECT OF CONTROL IN OBLIQUE GRADUAL STEPS /1083

‘a, Lffect of Control cn the Collective Angle of Attack

In this case, starting from a summary analysis of the control effects, we

13



are taking into consideration the variation in the angular velocity Aw,

angle A8, and in the induced velocity Aw as shown in Figs.h, 2, and 7,

ow|
!
f //’ '
H ) au
_Q{f;__gm._ﬁgﬂLj__"_ -

- 4t -~ !

Fig.7

in the

Then, the natural frequency will have an approximately ccnstant value of

the following form:

Vom = ¥n¢ + kA (-:3,,..

where Au,, is the average value, so that the equation of motion of the blade

can be written as follows:

b+ (@ +a,0) %, + 0%, = By + Bt + B, t3 + B, 13,
where

~

ﬁpb)o\

‘11 r @, (r)dr

o i ""°_§"z" (r)d |
M, 4 =2\ Bo (r)dr
N
I
,:P_A,‘i’QR 1, 7P, (r)dr
. 0
= PN ’
JL,+-4* o, (r)dr
4
b = J[n Yam

)
T

IR
M I\ O, (r)dr
o+ T\ G,

0

. R w
C,—%—\ (m;, 0, — —7‘1 mo) Db (r)t, r3dr

—n MR !
M, + -19-\ 20,0 dr

Y

14

(20)



~ (R .
C(’)—L\ (2 0)0 00 Amo t (.02 AOO w *Aua Aw

—v . — 0 () b 22
B __ 2k At T A *rit worAt)) )t e
=

C'-"-RR(O baj | o, B0,A0 By bwy
) 2 N 1]

. e Sl O, (r)t, rdr
, ap T2 A rAf ) )
‘B2 = -

\

~R
M, & EP.S“ b, (r)dr
£

A W AD, (¥

——\ @ (r)t, v dr

It
M, + %5 (2D, (r)dr

we will have

n!

L B, " = B—,
P

and, after substitution, we will obtain the differential eguation

‘24 px =g,
where dp
1
P= —(alp—i—az—}-aa.__).
: r
P NE R )
a\7r p2 pS p4
1 g b
Ay = ==y W= -—y U= —
a, a, a,

The solution of eq.{21) will then be

xq
Pt
" X =Cpuer” o

7 4 el’ﬁ p

15

1 B, 5
51 + pue ¢ —ﬁ_ﬁt— “x( +__+2B 4 6 B, )ldp
J.’: pﬂ;e 14 p p p ]

(21)

(22)



On expanding this expression in a series of exponential functions and
summing a determined number of terms, and considering that o, is not an inte-
ger, we will obtain terms of the function X being a sum of terms of the /1085

form kyp® (n differing from 1, 2, 3), so that this inverse trarsformation re-
t-n

A -n) *

condition is obtained because of the fact that the amplitude of wvibration tends

presents a sum cf terms of the form k; From this result, a first
toward zero, which necessarily means that the function T also tends toward in-
finite, meaning that, simultaneously, o, is a whole number,

Here, it can be demonstrated that the two terms, together with a con-
siderable restriction in the terms of the exponential series, can be calculated

by inverse transformation with the aid of the Borel theorem.,

b, Effect of Cyclic Variation on the Angle of Attack

Here and in the preceding case, the angular velocity remains constant

(w = wp = const) while the amplitude of the cyclic variation depends linearly

on the time,

Thus, the angle of attack can be expressed by
0 =0, + AO0sinwt,
where AD

A0 = 220y
At

The equation of motion of the blade will then be
G+ a8+ 0%, = By + g (1), (23)

where the quantities a, b, and B, in the above expression are the same as

given in eq.(12) where again q,(t) is expressed by

C, —§- m’% SR O, (r)t,1dr
@) =— °

R
ﬂn+§8mm&m
0

tsin wl =

16



R
C.p w? A9 S O, (r)t, r2dr
At ) t . |
= - —= 310 mt=q0?—sm wi.

(R
A, + ‘_4?8 O, (r) 6 Ar 2o ¢

iJ

A laplace transformation, at the initial conditions

and making use of eq,(23) will yield, as also follows from the previous case,
the imaginary function
2
X = P +2BY P +
op2+21}p+02 0p2+2Bp+CZ (2A)
+ Ba +y p? , ‘
P*+2Bp+C* U (pt + w2 (p?+ 2 Bp + ()

where a = 2B and b = C°,
The problem of deriving the inverse transformation can then be arbitrarily

expressed by the ultimate terms which can be written in the following form: /1086

q P . 1
q p? _ "(p*+ w¥* pP+ 2 Bp+ (3
0

(P*+ w22 (p* +2Bp + C?) P

making use of the Borel theorem,

Because of

Lg _P (sin wt e
0 (p* + i) 50 wt + w! cos wi)

we will obtain the inverse transformation of the quantity

1
P+ 2 Bp + (3

in the above-discussed case, so that we will have, at C*® >B?,

17



A 1
2 2y2 2 D 2 "t
(PP+oe?? p*+2Bp +C :\ (i [sine (i — T) +
P o (25)
+ w(t—T)cos w(t—T) —ve®sin(kT4+®) [sin w(t—T) +
+ w({t—T)cos w(t—T)]} 47,

%
L—l

where

k= VCIZB, u=-2_. y=_1

2w(? 2wCI.

In the case of C® < B, we will have together with

-fx = %o v Yy = L '
2‘1)A1 (Al _ Ag) 2w A2 (Al _ [‘;2)
') L : 1
Lt (P el p2Bp 4 CF
P

[
::& {Uusineo(t—T)+ w{t—T)cos 0 (t—T)] +

Jo
+ e MBinet—T)+ o (t—T)cos w (t—T)) —
-y e M inw(t-1)+ o{t—T)cos o (t—T))}dT.
_ As a general conclusion, it can be stated that the vibrations resulting
frcm the effect oi the control are attenuated much more rapidly the greater
the damping of the natural I "equency of the blade,
In the case of variations due io sudden application of control or /1387
gradual oblique application in the collective angle of attack, it is found

that special conditions of damping of the blades must be satisfied,
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